Skip to main content
Chemistry LibreTexts

Ring Substitution of Phenols

Substitution of the Hydroxyl Hydrogen

As with the alcohols, the phenolic hydroxyl hydrogen is rather easily replaced by other substituents. For example, phenol reacts easily with acetic anhydride to give phenyl acetate. Likewise, the phenolate anion is an effective nucleophile in SN2 reactions, as in the second example below.

C6H5–OH   +  (CH3CO)2O     C6H5–O–COCH3   +  CH3CO2H

C6H5–O(–) Na(+)   +  CH3CH2CH3–Br     C6H5–O–CH2CH2CH3   +  NaBr

 

Electrophilic Substitution of the Phenol Aromatic Ring

The facility with which the aromatic ring of phenols and phenol ethers undergoes electrophilic substitution has been noted. Two examples are shown in the following diagram. The first shows the Friedel-Crafts synthesis of the food preservative BHT from para-cresol. The second reaction is interesting in that it further demonstrates the delocalization of charge that occurs in the phenolate anion. Carbon dioxide is a weak electrophile and normally does not react with aromatic compounds; however, the negative charge concentration on the phenolate ring enables the carboxylation reaction shown in the second step. The sodium salt of salicylic acid is the major product, and the preference for ortho substitution may reflect the influence of the sodium cation. This is called the Kolbe-Schmidt reaction, and it has served in the preparation of aspirin, as the last step illustrates.


Contributors