Skip to main content
Chemistry LibreTexts

Hydroboration Reactions and Oxidations

Hydroboration Reactions

Diborane reacts readily with alkynes, but the formation of substituted alkene products leaves open the possibility of a second addition reaction. A clever technique for avoiding this event takes advantage of the fact that alkynes do not generally suffer from steric hindrance near the triple-bond (the configuration of this functional group is linear). Consequently, large or bulky electrophilic reagents add easily to the triple-bond, but the resulting alkene is necessarily more crowded or sterically hindered and resists further additions. The bulky hydroboration reagent needed for this strategy is prepared by reaction of diborane with 2-methyl-2-butene, a highly branched alkene. Because of the alkyl branching, only two alkenes add to a BH3 moiety (steric hindrance again), leaving one B-H covalent bond available for reaction with an alkyne, as shown below. The resulting dialkyl borane is called disiamylborane, a contraction of di-secondary-isoamylborane (amyl is an old name for pentyl).

2 (CH3)2C=CHCH3   +   BH3 in ether   ——>  [ (CH3)2CH-CH(CH3) ]2B-H     disiamylborane

An important application of disiamylborane is its addition reaction to terminal alkynes. As with alkenes, the B-H reagent group adds in an apparently anti-Markovnikov manner, due to the fact that the boron is the electrophile, not the hydrogen. Further addition to the resulting boron-substituted alkene does not occur, and the usual oxidative removal of boron by alkaline hydrogen peroxide gives an enol which rapidly rearranges to the aldehyde tautomer. Thus, by the proper choice of reagents, terminal alkynes may be converted either to methyl ketones (mercuric ion catalyzed hydration) or aldehydes (hydroboration followed by oxidation).

RC≡CH   +   (C5H11)2B-H   ——>   [ RCH=CH-B(C5H11)2 ]   +   H2O2 & NaOH   ——>   [ RCH=CH-OH ] ——>   RCH2-CH=O

Hydroboration of internal alkynes is not a particularly useful procedure because a mixture of products will often be obtained, unless the triple-bond is symmetrically substituted. Mercuric ion catalyzed hydration gives similar results.


Reactions of alkynes with oxidizing agents such as potassium permanganate and ozone usually result in cleavage of the triple-bond to give carboxylic acid products. A general equation for this kind of transformation follows. The symbol [O] is often used in a general way to denote an oxidation.

RC≡CR'   +  [O]   ——>  RCO2H   +   R'CO2H