Skip to main content
Chemistry LibreTexts

Literature Cited

  • Page ID
    62353
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

      1. P.T. Jackson and J.P. Walters, Role-playing in analytical chemistry: the alumni speak, Journal of Chemical Education, 2000, 77, 1019-1025.
      2. J.P. Walters, Role-playing analytical chemistry laboratories. Part 1: structural and pedagogical ideas, Analytical Chemistry, 1991, 63, 977A-985A.
      3. J.P. Walters, Role-playing analytical chemistry laboratories. Part II: physical resources. Analytical Chemistry, 1991, 63, 1077A-1084A.
      4. J.P. Walters, Role-playing analytical chemistry laboratories. Part III: experiment objectives and design, Analytical Chemistry, 63, 1179A-1191A.
      5. K.D. Hughes, Marine microcosm - using an aquarium to teach undergraduate analytical chemistry, Analytical Chemistry, 1993, 65, 883A-889A.
      6. G.S. Wilson, M.R. Anderson, C.E. Lunte, Instrumental analysis at the University of Kansas: An experiment in problem-based learning. Analytical Chemistry, 1999, 71, 677A-681A
      7. W.W. Hope and L.P. Johnson, Urban air: Real samples for undergraduate analytical chemistry. Students learn analytical chemistry by addressing urban environmental issues, Analytical Chemistry, 2000, 72, 460A-467A.
      8. T.C. Werner, P. Tobissen, and K. Lou, The water project. A "Real-World" experience for the Quantitative Analysis Laboratory, Analytical Chemistry, 73, 84A-97A.
      9. T. J. Wenzel, Problem-based learning: in need of supporting materials, Analytical Chemistry, 2001, 73, 501A-502A.
      10. 1. C. Dorey, Problem-based learning exercise in the quantitative analysis laboratory. Abstracts of Papers, 222nd ACS National Meeting, Chicago, IL, United States, August 26-30, 2001
      11. J.F. Tyson, Collaborative learning through project work: The impact of two NSF awards on Chem 312, "analytical chemistry for non-chemistry majors". Abstracts of Papers, 222nd ACS National Meeting, Chicago, IL, United States, August 26-30, 2001
    1. C.L. Nelson, J. Castro-Sanchez, and J.E. Pemberton, Materials characterization project: A student's view of problem-based learning. Abstracts of Papers, 221st ACS National Meeting, San Diego, CA, United States, April 1-5, 2001
    2. C. K. Larive, Problem-based learning in the analytical chemistry laboratory course, Analytical and Bioanalytical Chemistry, 2004, 380, 357-359.
    3. S. M. Halpine, Introducing molecular visualization to primary schools in California: the STArt! teaching science through art program. Journal of Chemical Education, 2004, 81, 1431-1436.
    4. P. J. Ogren and D. L. Bunse, Interdisciplinary course in art and chemistry, Journal of Chemical Education, 1971, 48, 681-682.
    5. M. V. Orna, The molecular basis of form and color. A chemistry course for art majors, Journal of Chemical Education, 1976, 53, 638-639.
    6. www.amolf.nl (Go to Molecular Painting Research). Numerous PhD theses are available for download. (Accessed May 1, 2005).
    7. M. V. Merritt, Problem-based Learning in Teaching Analytical Chemistry: An Integrative Approach. Managing the Modern Laboratory, 2000, 5 (1) 1-5.
    8. R.J. Gettens and G.L. Stout, Painting Materials, A short encyclopedia Dover Publications, Inc., NY. 1966.
    9. J.S. Mills and R. White, The Organic Chemistry of Museum Objects, 2nd Edition Butterworth-Heinemann, Oxford. 1994.
    10. J. van der Weerd, Microspectroscopic Analysis of Traditional Oil Paint. 2002, PhD Thesis, AMOLF, Chapter 2, p. 19. Available at www.amolf.nl (accessed June 2004).
    11. J. van der Weerd, M.K. van Veen, R.M.A. Heeren, and J.J. Boon, Identification of pigments in paint cross sections by reflection visible light imaging microspectroscopy. Analytical Chemistry 2003, 75, 716-722.
    12. E. Ciliberto and G. Spoto, Modern Analytical Methods in Art and Archaeology, Vol. 155, Chemical Analysis. A Series of Monographs on Analytical Chemistry and its Applications, John Wiley and Sons, New York, 2000.
    13. S. L. Vallance, Applications of chromatography in art conservation: techniques used for the analysis and identification of proteinaceous and gum binding media, Analyst, 1997, 122, 75R-81R.
    14. M. P. Colombini and F. Modugno, Characterisation of proteinaceous binders in artistic paintings by chromatographic techniques, Journal of Separation Science, 2004, 27, 147-160.
    15. R. Aruga, P. Mirti, A. Casoli, and G. Palla, Classification of ancient proteinaceous painting media by the joint use of pattern recognition and factor analysis on GC/MS data, Fresenius' Journal of Analytical Chemistry, 1999, 365, 559-566.
    16. J. D. J. van den Berg, J. J. Boon, K. J. van den Berg, I. Fiedler, and M. A. Miller, Identification of an Original Non-Terpenoid Varnish from the Early 20th Century Oil Painting \"The White Horse\" (1929), by H. Menzel, Analytical Chemistry, 1998, 70, 1823-1830.
    17. M. P. Colombini, F. Modugno, M. Giacomelli, and S. Francesconi, Characterisation of proteinaceous binders and drying oils in wall painting samples by gas chromatography-mass spectrometry, Journal of Chromatography, A, 1999, 846, 113-124.
    18. G. Chiavari and S. Prati, Analytical pyrolysis as diagnostic tool in the investigation of works of art. Chromatographia 2003, 58(9/10), 543-554.
    19. J. J. Boon, Analytical pyrolysis mass spectrometry: new vistas opened by temperature-resolved in-source PYMS, International Journal of Mass Spectrometry and Ion Processes, 1992, 118-119, 755-787.
    20. S. M. Halpine, HPLC applications in art conservation. Chromatographic Science Series (1998), 78(Handbook of HPLC), 903-927.
    21. S. M. Halpine, Amino acid analysis of proteinaceous media from Cosimo Tura's 'The Annunciation with Saint Francis and Saint Louis of Toulouse', Studies in Conservation, 1992, 37, 22-38.
    22. S. Peulve, J. J. Boon, M. Duursma, O. van den Brink, P. O'Connor, and R. M. A. Heeren, Mass spectrometric studies of proteins in fresh egg and aged egg tempera paint films. Progress report I, Advances in Mass Spectrometry, 1998, 14, C022050/1-C022050/15.
    23. N. Shibayama, S. Q. Lomax, K. Sutherland, and E. R. De la Rie, Atmospheric pressure chemical ionization liquid chromatography mass spectrometry and its application to conservation: analysis of triacylglycerols, Studies in Conservation, 1999, 44, 253-268.
    24. M. Puchalska, K. Polec-Pawlak, I. Zadrozna, H. Hryszko, and M. Jarosz, Identification of indigoid dyes in natural organic pigments used in historical art objects by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry, Journal of Mass Spectrometry, 2004, 39, 1441-1449.
    25. M. Odlyha and A. Burmester, Preliminary investigations of the binding media of paintings by differential thermal analysis, Journal of Thermal Analysis, 1988, 33, 1041-52.
    26. S. Felder-Casagrande and M. Odlyha, Development of standard paint films based on artists' materials, Journal of Thermal Analysis, 1997, 49, 1585-1591.
    27. M. P. Colombini, F. Modugno, R. Fuoco, and A. Tognazzi, A GC-MS study on the deterioration of lipidic paint binders, Microchemical Journal, 2002, 73, 175-185.
    28. R. J. Meilunas, J. G. Bentsen, and A. Steinberg, Analysis of aged paint binders by FTIR spectroscopy, Studies in Conservation, 1990, 35, 33-51.
    29. L. Masschelein-Kleiner, Improved method for the thin-layer chromatography of media in tempera paintings, Studies in Conservation, 1974, 19, 207-11.
    30. B. Ramirez-Barat and S. de la Vina, Characterization of proteins in paint media by immunofluorescence. A note on methodological aspects, Studies in Conservation, 2001, 46, 282-288.
    31. I. Zadrozna, K. Polec-Pawlak, I. Gluch, M. A. Ackacha, M. Mojski, J. Witowska-Jarosz, and M. Jarosz, Old master paintings - a fruitful field of activity for analysts: targets, methods, outlook, Journal of Separation Science, 2003, 26, 996-1004.
    32. R. Hynek, S. Kuckova, J. Hradilova, and M. Kodicek, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a tool for fast identification of protein binders in color layers of paintings, Rapid Communications in Mass Spectrometry, 2004, 18, 1896-1900.
    33. V. F. Hanson, Quantitative elemental analysis of art objects by energy-dispersive x-ray fluorescence spectroscopy, Applied Spectroscopy, 1973, 27, 309-33.
    34. www.plantingfields.org/PhotoHouse/01.cfm (accessed, May 16, 2005)
    35. W.S. Taft and J.W. Mayer, The Science of Paintings. Springer-Verlag, NY, 2000, p. 28.
    36. A. Casolli, P. Musini, G. Palla, Gas chromatographic-mass spectrometric approach to the problem of characterizing binding media in paintings, Journal of Chromatography A, 1996 731, 1996, 237-246.
    37. B.A. Bidlingmeyer, S.A. Cohen, and T. L. Tarvin, Rapid analysis of amino acids using pre-column derivatization, Journal of Chromatography, 1984, 336, 93-104.

    This page titled Literature Cited is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Contributor.